جدول المحتويات:
- الخطوة 1: الأجهزة المطلوبة:
- الخطوة 2: ربط الأجهزة:
- الخطوة الثالثة: كود قياس التسارع:
- الخطوة 4: التطبيقات:
فيديو: قياس التسارع باستخدام ADXL345 والفوتون الجسيمي: 4 خطوات
2024 مؤلف: John Day | [email protected]. آخر تعديل: 2024-01-30 07:36
ADXL345 هو مقياس تسارع صغير ورفيع وقوي للغاية وثلاثة محاور بدقة عالية (13 بت) قياس يصل إلى ± 16 جم. يتم تنسيق بيانات الإخراج الرقمية كمكمل ثنائي 16 بت ويمكن الوصول إليها من خلال الواجهة الرقمية I2 C. يقيس التسارع الثابت للجاذبية في تطبيقات استشعار الميل ، وكذلك التسارع الديناميكي الناتج عن الحركة أو الصدمة. تتيح الدقة العالية (3.9 مجم / LSB) قياس تغيرات الميل أقل من 1.0 درجة.
في هذا البرنامج التعليمي ، تم توضيح واجهة وحدة استشعار ADXL345 مع فوتون الجسيمات. لقراءة قيم التسارع ، استخدمنا الجسيمات مع محول I2c. يجعل هذا المحول I2C الاتصال بوحدة المستشعر أسهل وأكثر موثوقية.
الخطوة 1: الأجهزة المطلوبة:
تشمل المواد التي نحتاجها لتحقيق هدفنا مكونات الأجهزة التالية:
1. ADXL345
2. جسيم الفوتون
3. كابل I2C
4. I2C Shield للفوتون الجسيمي
الخطوة 2: ربط الأجهزة:
يشرح قسم توصيل الأجهزة بشكل أساسي اتصالات الأسلاك المطلوبة بين المستشعر وفوتون الجسيمات. يعد التأكد من التوصيلات الصحيحة ضرورة أساسية أثناء العمل على أي نظام للإخراج المطلوب. إذن ، الاتصالات المطلوبة هي كما يلي:
سيعمل ADXL345 على I2C. فيما يلي مثال على مخطط الأسلاك ، يوضح كيفية توصيل كل واجهة من أجهزة الاستشعار.
خارج الصندوق ، تم تكوين اللوحة لواجهة I2C ، لذلك نوصي باستخدام هذا التوصيل إذا كنت غير مدرك.
كل ما تحتاجه هو أربعة أسلاك! مطلوب أربعة اتصالات فقط دبابيس Vcc و Gnd و SCL و SDA ويتم توصيلها بمساعدة كابل I2C.
هذه الوصلات موضحة في الصور أعلاه.
الخطوة الثالثة: كود قياس التسارع:
لنبدأ الآن برمز الجسيمات.
أثناء استخدام وحدة المستشعر مع الجسيمات ، نقوم بتضمين مكتبة application.h و spark_wiring_i2c.h. تحتوي مكتبة "application.h" و spark_wiring_i2c.h على الوظائف التي تسهل اتصال i2c بين المستشعر والجسيم.
يتم توفير رمز الجسيمات بالكامل أدناه لراحة المستخدم:
#يشمل
#يشمل
// عنوان ADXL345 I2C هو 0x53 (83)
#define Addr 0x53
int xAccl = 0، yAccl = 0، zAccl = 0 ؛
الإعداد باطل()
{
// تعيين متغير
Particle.variable ("i2cdevice"، "ADXL345") ؛
Particle.variable ("xAccl" ، xAccl) ؛
Particle.variable ("yAccl" ، yAccl) ؛
Particle.variable ("zAccl"، zAccl) ؛
// تهيئة اتصال I2C باعتباره MASTER
Wire.begin () ؛
// تهيئة الاتصال التسلسلي ، اضبط معدل الباود = 9600
Serial.begin (9600) ؛
// بدء نقل I2C
Wire.beginTransmission (العنوان) ؛
// حدد سجل معدل عرض النطاق الترددي
Wire.write (0x2C) ؛
// حدد معدل بيانات الإخراج = 100 هرتز
Wire.write (0x0A) ؛
// إيقاف ناقل الحركة I2C
Wire.endTransmission () ؛
// بدء نقل I2C
Wire.beginTransmission (العنوان) ؛
// حدد سجل التحكم في الطاقة
Wire.write (0x2D) ؛
// حدد تعطيل النوم التلقائي
Wire.write (0x08) ؛
// إيقاف انتقال I2C
Wire.endTransmission () ؛
// بدء نقل I2C
Wire.beginTransmission (العنوان) ؛
// حدد سجل تنسيق البيانات
Wire.write (0x31) ؛
// حدد الدقة الكاملة ، +/- 2g
Wire.write (0x08) ؛
// نهاية انتقال I2C
Wire.endTransmission () ؛
تأخير (300) ؛
}
حلقة فارغة()
{
بيانات int غير الموقعة [6] ؛
لـ (int i = 0 ؛ i <6 ؛ i ++)
{
// بدء نقل I2C
Wire.beginTransmission (العنوان) ؛
// حدد سجل البيانات
Wire.write ((50 + i)) ؛
// إيقاف انتقال I2C
Wire.endTransmission () ؛
// طلب 1 بايت من البيانات من الجهاز
Wire.request From (Addr، 1) ؛
// قراءة 6 بايت من البيانات
// xAccl lsb و xAccl msb و yAccl lsb و yAccl msb و zAccl lsb و zAccl msb
إذا (Wire.available () == 1)
{
البيانات = Wire.read () ؛
}
تأخير (300) ؛
}
// تحويل البيانات إلى 10 بت
int xAccl = (((data [1] & 0x03) * 256) + data [0]) ؛
إذا (xAccl> 511)
{
xAccl - = 1024 ؛
}
int yAccl = (((data [3] & 0x03) * 256) + data [2]) ؛
إذا (yAccl> 511)
{
yAccl - = 1024 ؛
}
int zAccl = (((data [5] & 0x03) * 256) + data [4]) ؛
إذا (zAccl> 511)
{
zAccl - = 1024 ؛
}
// إخراج البيانات إلى لوحة القيادة
Particle.publish ("التسريع في المحور X هو:" ، سلسلة (xAccl)) ؛
Particle.publish ("التسريع في المحور ص هو:" ، سلسلة (yAccl)) ؛
Particle.publish ("التسريع في المحور Z هو:" ، سلسلة (zAccl)) ؛
}
تنشئ الدالة Particle.variable () المتغيرات لتخزين إخراج المستشعر وتعرض وظيفة Particle.publish () الإخراج على لوحة القيادة بالموقع.
يظهر خرج المستشعر في الصورة أعلاه للرجوع إليها.
الخطوة 4: التطبيقات:
ADXL345 عبارة عن مقياس تسارع صغير ورفيع للغاية ومنخفض السرعة ثلاثي المحاور يمكن استخدامه في الهواتف والأجهزة الطبية وما إلى ذلك. ويشمل تطبيقه أيضًا أجهزة الألعاب والتأشير والأجهزة الصناعية وأجهزة الملاحة الشخصية وحماية محرك الأقراص الثابتة (HDD).
موصى به:
قياس التسارع باستخدام H3LIS331DL والفوتون الجسيمي: 4 خطوات
قياس التسارع باستخدام H3LIS331DL والفوتون الجسيمي: H3LIS331DL ، هو مقياس تسارع خطي منخفض الطاقة وعالي الأداء ثلاثي المحاور ينتمي إلى عائلة "نانو" ، مع واجهة تسلسلية رقمية I²C. يحتوي H3LIS331DL على مقاييس كاملة يمكن اختيارها من قبل المستخدم تبلغ ± 100 جم / ± 200 جم / ± 400 جم وهي قادرة على قياس التسارع
قياس التسارع باستخدام BMA250 والفوتون الجسيمي: 4 خطوات
قياس التسارع باستخدام BMA250 والفوتون الجسيمي: BMA250 عبارة عن مقياس تسارع صغير ورفيع وذي قوة منخفضة للغاية وثلاثة محاور بدقة عالية (13 بت) قياس يصل إلى ± 16 جم. يتم تنسيق بيانات الإخراج الرقمية كمكمل ثنائي 16 بت ويمكن الوصول إليها من خلال الواجهة الرقمية I2C. يقيس ثابت
قياس الضغط باستخدام CPS120 والفوتون الجسيمي: 4 خطوات
قياس الضغط باستخدام CPS120 والفوتون الجسيمي: CPS120 عبارة عن مستشعر ضغط مطلق سعوي عالي الجودة ومنخفض التكلفة مع إخراج معوض بالكامل. يستهلك طاقة أقل ويتألف من مستشعر ميكانيكي كهروميكانيكي صغير جدًا (MEMS) لقياس الضغط. دلتا سيجما
قياس درجة الحرارة باستخدام STS21 والفوتون الجسيمي: 4 خطوات
قياس درجة الحرارة باستخدام STS21 وفوتون الجسيمات: يوفر مستشعر درجة الحرارة الرقمي STS21 أداءً فائقًا وبصمة موفرة للمساحة. يوفر إشارات خطية معايرة بتنسيق رقمي I2C. يعتمد تصنيع هذا المستشعر على تقنية CMOSens ، والتي تنسب إلى
قياس درجة الحرارة باستخدام ADT75 والفوتون الجسيمي: 4 خطوات
قياس درجة الحرارة باستخدام ADT75 والفوتون الجسيمي: ADT75 هو مستشعر درجة حرارة رقمي عالي الدقة. وهو يتألف من مستشعر درجة حرارة فجوة النطاق ومحول تناظري رقمي 12 بت لمراقبة درجة الحرارة ورقمنتها. مستشعره شديد الحساسية يجعله كفؤًا بدرجة كافية بالنسبة لي